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Abstract
In this research endeavour, we will undertake a comprehensive examination of the distinctions existing among various types

of matrices, including real matrices, fuzzy matrices, intuitionistic fuzzy matrices, and neutrosophic fuzzy matrices. To enhance
our understanding of these matrix types, we will illustrate the concepts with practical numerical examples. Additionally, we
will provide a thorough exploration of the limitations and advantages associated with each of these matrix types.
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1. Introduction

Fuzzy matrices, introduced by Zadeh [1] are an extension of traditional matrices designed to capture
and represent the concept of fuzziness and uncertainty. They are a fundamental component of fuzzy set
theory, which revolutionized how we handle vague or imprecise data. Fuzzy matrices assign each element
a value between 0 and 1, representing the degree of membership of an element in specific set. Fuzzy ma-
trices are instrumental in handling imprecise data. They allow us to represent membership with varying
degrees of certainty, making them valuable in fields like artificial intelligence, where uncertainty is prevalent.
Fuzzy matrices are widely used in fields such as control systems, decision-making, pattern recognition, and
artificial intelligence to handle fuzzy logic and fuzzy reasoning. Thomason [3] has studied Convergence of
powers of a fuzzy matrix. Kim and Roush [4] have discussed Generalized fuzzy matrices. Punithavalli and
Anandhkumar [10] have studied Interval Valued Secondary k-Kernel Symmetric Fuzzy Matrices.

Intuitionistic fuzzy matrices, introduced by Krassimir Atanassov [2], take the concept of fuzzy matri-
ces a step further. In addition to capturing membership degrees, they also account for non-membership
degrees and hesitancy, providing a more comprehensive framework ifor handling uncertanty. Each ele-
ment in an intuitionistic fuzzy matrix has three values: µ (membership), ν (non-membership), and λ

(hesitancy).Intuitionistic fuzzy matrices are particularly valuable when decision-makers need to express
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their doubts or conflicts in a more detailed manner. They excel in multi-criteria decision-making and
expert systems. Intuitionistic fuzzy matrices find applications in multi-criteria decision-making, expert
systems, and situations where decision-makers need to express their uncertainty in a more granular man-
ner. Anandhkumar, Kamalakannan, Chitra, Said [5] have studied Pseudo similarity of neutrosophic fuzzy
matrices. Anandhkumar, Kanimozhi, Chithra, Kamalakannan, Said [6] have studied On various Inverse
of neutrosophic fuzzy matrices. . Punithavalli and Anandhkumar[8] have discussed Secondary k-Kernel
Symmetric Intuitionistic Fuzzy Matrices.

Neutrosophic matrices, introduced by Florentin Smarandache, are specifically designed to manage prob-
lems involving indeterminacy, inconsistency, and partial truth. They offer a unique approach for dealing
with elements that can be true, indeterminate, or false.Each element in a neutrosophic matrix can take
one of three values: T (true), I (indeterminate), and F (false), representing the truth, neutrality, or fal-
sity of an element’s membership to a set. Neutrosophic matrices are indispensable in situations where
information is incomplete or inconsistent. They provide a more versatile tool for decision-making in un-
certain environments. Neutrosophic matrices are applied in areas such as decision-making in uncertain
environments, information fusion in sensor networks, and situations where information is inconsistent or
incomplete. Smarandache [7] has studied Neutrosophic set, a generalization of the intuitionistic fuzzy set.
Anandhkumar; Punithavalli; Soupramanien; Said Broumi [9] have discussed Generalized Symmetric Neu-
trosophic Fuzzy Matrices. Anandhkumar. Kanimozhi,. Chithr, .Kamalakannan,.Said [11]] have studied On
various Inverse of Neutrosophic Fuzzy Matrices.

Anandhkumar has taken the initiative to bring forth novel concepts like Range and Column Symmetric
Intuitionistic Fuzzy Matrices, Range and Column Symmetric Neutrosophic Fuzzy Matrices, Interval val-
ued Neutrosophic fuzzy matrix, Interval valued Secondary k-kernel symmetric fuzzy matrix, Interval valued
Secondary k-Range symmetric Intuitionistic fuzzy matrix. In addition to introducing these new concepts,
Anandhkumar has provided concrete numerical examples to elucidate and illustrate the practical applica-
tions and implications of these ideas.

1.1 Notations: For Fuzzy Matrix of A ∈ (F)n, .
AT : transpose of A,
R(A) : Row space of A,
C(A) : Column space of A,
N(A) : Null Space of A
: Moore-Penrose inverse of A ,
(IF)n: Square Fuzzy Matrix.
F[1×n] : The matrix one row n columns.
F[n×1] : The matrix n rows one column.
IFM: Intuitionistic Fuzzy Matrix
NFM: Neutrosophic Fuzzy Matrix

2. Range and Column Symmetric Intuitionistic Fuzzy Matrices

Definition 2.1. Let the intuitionistic Fuzzy Matrix A of order m rows and n columns is in the form of
A = [yij,< aijα,aijβ >] ,where aijα and aijβ are called the degree of membership and also the non-
membership ofyij in A , it preserving the condition 0 ⩽ aijα + aijβ ⩽ 1.

.

Definition 2.2. Suppose a and b are two IFM elements a =< aijα,aijβ >,b =< bijα,bijβ >, are component
wise addition and multiplication are described as, a+ b =< maximum of

{
aijα,bijα

}
, minimum of

{
aijβ,bijβ

}
> and a.b =< minimum of

{
aijα,bijα

}
, maximum of

{
aijβ,bijβ

}
> .
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.

Definition 2.3. The scalar multiplication of intuitionistic Fuzzy Matrix A = (< aijα,aijβ >) ∈ Fm×n, such
that 0 ⩽ a ⩽ 1 is denoted by aA = (< minimum of

{
a,aijα

}
, maximum of

{
(1− a),aijβ

}
>) ∈ Fm×n.

.

Definition 2.4. Let A be a IFM, if R[A]= R[AT ] then A is called as range symmetric.

.
Example: 2.1 Let us consider IFM

A =

< 0.2, 0.5 > < 0, 0 > < 0.7, 0.2 >

< 0, 0 > < 0, 0 > < 0, 0 >

< 0.7, 0.2 > < 0, 0 > < 0.3, 0.2 >

 ,

The following matrices are not range symmetric

A =

< 1, 0 > < 1, 0 > < 0, 0 >

< 0, 0 > < 1, 0 > < 1, 0 >

< 0, 0 > < 0, 0 > < 1, 0 >

,

AT =

< 1, 0 > < 0, 0 > < 0, 0 >

< 1, 0 > < 1, 0 > < 0, 0 >

< 0, 0 > < 1, 0 > < 1, 0 >

,

([
< 1, 0 > < 1, 0 > < 0, 0 >

])
∈ R(A) , ,

([
< 1, 0 > < 1, 0 > < 0, 0 >

])
∈ R(AT )

([
< 0, 0 > < 1, 0 > < 1, 0 >

])
∈ R(A),

([
< 0, 0 > < 1, 0 > < 1, 0 >

])
∈ R(AT )

([
< 0, 0 > < 0, 0 > < 1, 0 >

])
∈ R(A)

([
< 0, 0 > < 0, 0 > < 1, 0 >

])
/∈ R(AT )

R(A) /∈ R(AT )

Definition 2.5. Definition : 2.5 Let A ∈ Fn be an Intuitionistic fuzzy matrix , if N(A) =N(AT ) then A is
called kernel symmetric IFM where N(A) = x/xA = (0,0) and x ∈ F1×n,

.
Example: 2.2 Let us consider IFM

A =

< 0.4, 0.5 > < 0, 0 > < 0.6, 0.4 >

< 0, 0 > < 0, 0 > < 0, 0 >

< 0.4, 0.5 > < 0, 0 > < 0.4, 0.3 >

,

Definition 2.6. Definition: 2.6 Let P be a IFM, if C[P]= C[PT ] then P is called as Column symmetric.
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.
Example: 2.3 Let us consider

P =

< 0.3, 0.5 > < 0, 0 > < 0.7, 0.2 >

< 0, 0 > < 0, 0 > < 0, 0 >

< 0.7, 0.2 > < 0, 0 > < 0.3, 0.2 >

,

The following matrices are not column symmetric

P =

< 1, 0 > < 1, 0 > < 0, 0 >

< 0, 0 > < 1, 0 > < 1, 0 >

< 0, 0 > < 0, 0 > < 1, 0 >

,

PT =

< 1, 0 > < 0, 0 > < 0, 0 >

< 1, 0 > < 1, 0 > < 0, 0 >

< 0, 0 > < 1, 0 > < 1, 0 >

,

([
< 1, 0 > < 0, 0 > < 0, 0 >

])T ∈ C(P) ,
([
< 1, 0 > < 0, 0 > < 0, 0 >

])T
/∈ C(PT )

([
< 1, 0 > < 1, 0 > < 0, 0 >

])T ∈ C(P) ,
([
< 1, 0 > < 1, 0 > < 0, 0 >

])T ∈ C(PT )

([
< 0, 0 > < 1, 0 > < 1, 0 >

])T ∈ C(P) ,
([
< 0, 0 > < 1, 0 > < 1, 0 >

])T ∈ C(PT )

Definition 2.7. For Intuitionistic fuzzy matrix A belongs to Fn is s - symmetric Intuitionistic fuzzy matrix
iff A = VATV

.

Definition 2.8. For Intuitionistic fuzzy matrix A belongs to Fn is s-kernel symmetric Intuitionistic fuzzy
matrix if N ( A) =N(VATV) .

.

Definition 2.9. For Intuitionistic fuzzy matrix A belongs to Fn is s- k-kernel symmetric Intuitionistic fuzzy
matrix if N ( A) =N (KVATVK ) .

Remark 2.1 We observe that s-k-symmetric Intuitionistic fuzzy matrix is s-k-kernel symmetric Intu-
itionistic fuzzy matrix because if A is s-k-symmetric then A =KVATVK, which means that A is s-k-kernel
symmetric Intuitionistic fuzzy matrix, then N (A)= N(KVATVK). The reverse, however, is not always true.
This V is demonstrated in the example that follows.
Example 2.4. Let us consider IFM,

A =

[
< 1, 0 > < 0.2, 0.3 >

< 0.2, 0.3 > < 0.4, 0.3 >

]
,

KVATVK =

[
< 0.4, 0 > < 0.2, 0 >

< 0.2, 0 > < 1, 0 >

]
̸= A

Here A =KATK

Therefore A is symmetric IFM, κ –symmetric IFM, s- κ -kernel symmetric IFM but not s- κ –symmetric
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IFM.
Example 2.5. Let u consider IFM,

V =

[
< 0, 0 > < 1, 0 >

< 1, 0 > < 0, 0 >

]
,A =

[
< 0.5, 0.2 > < 0.4, 0.2 >

< 0.4, 0.2 > < 0.5, 0.2 >

]

KVATVK =

[
< 0.5, 0.2 > < 0.4, 0.2 >

< 0.4, 0.2 > < 0.5, 0.2 >

]
= A

A is symmetric, s-κ-symmetric and hence therefore s- k-kernel symmetric.
Example 2.6 Let us consider IFM

K =

< 0, 0 > < 1, 0 > < 0, 0 >

< 1, 0 > < 0, 0 > < 0, 0 >

< 0, 0 > < 0, 0 > < 1, 0 >

,V =

< 0, 0 > < 0, 0 > < 1, 0 >

< 0, 0 > < 1, 0 > < 0, 0 >

< 1, 0 > < 0, 0 > < 0, 0 >



A =

 < 0, 0 > < 0, 0 > < 1, 0 >

< 0.2, 0.3 > < 1, 0 > < 0, 0 >

< 0.2, 0.3 > < 0.4, 0.5 > < 0, 0 >


,

KV =

< 0, 0 > < 1, 0 > < 0, 0 >

< 0, 0 > < 0, 0 > < 1, 0 >

< 1, 0 > < 0, 0 > < 0, 0 >



VK =

< 0, 0 > < 0, 0 > < 1, 0 >

< 1, 0 > < 0, 0 > < 0, 0 >

< 0, 0 > < 1, 0 > < 0, 0 >


KVATVK =

 < 1, 0 > < 0.4, 0 > < 0, 0 >

< 0, 0 > < 0, 0 > < 1, 0 >

< 0.2, 0 > < 1, 0 > < 0, 0 >

 ̸= A

A ̸= KVATVK

Hence A is not s- k-symmetric. But s- k- kernel symmetric.
i.e) N ( A) = N(KVATVK) = (0,0).
3. Range and Column Symmetric Neutrosophic Fuzzy Matrices

Definition 2.10. Let P ∈ Fn be a Neutrosophic fuzzy matrix , if N(P) =N(PT) then P is called kernel
symmetric NFM where N(P)= x/xP = (0,0,0) and x ∈ F1×n,

.
Example: 3.1 Let us consider NFM

P =

(0.4, 0.5, 0.6) (0, 0, 0) (0.6, 0.4, 0.8)
(0, 0, 0) (0, 0, 0) (0, 0, 0)

(0.4, 0.5, 0.7) (0, 0, 0) (0.4, 0.3, 0.6)

,
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.

N(P) = N(PT ) = (0, 0, 0)

.

Definition 2.11. Unit Neutrosophic fuzzy matrix
A square Neutrosophic fuzzy matrix is said to be unit Neutrosophic fuzzy matrix if = (1,1,0) and = (0,1,1),
for all. It is denoted by I.

.
Example: 3.2 Let us consider NFM,

I =

(1, 1, 0) (0, 1, 1) (0, 1, 1)
(0, 1, 1) (1, 1, 0) (0, 1, 1)
(0, 1, 1) (0, 1, 1) (1, 1, 0)



Definition 2.12. Symmetric Neutrosophic fuzzy matrix
A square Neutrosophic fuzzy matrix is said to be symmetric Neutrosophic fuzzy matrix if A=AT

.
Example: 3.3 Let us consider NFM

P =

 (0.3, 0.5, 0.8) (0, 0, 0) (0.5, 0.3, 0.1)
(0, 0, 0) (0, 0, 0) (0, 0, 0)

< 0.5, 0.3, 0.1 > (0, 0, 0) < 0.3, 0.5, 0.7 >

,

.

Definition 2.13. Permutation neutrosophic fuzzy matrix
A Permutation Neutrosophic fuzzy from the same size identity matrix by a permutation of rows. Every row
single (1,1,0) with (0,0,1) ‘s everywhere else.

Example:3.4 Let us consider NFPM,

K =

(0, 0, 1) (0, 0, 1) (1, 1, 0)
(0, 0, 1) (1, 1, 0) (0, 0, 1)
(1, 1, 0) (0, 0, 1) (0, 0, 1)


.

Definition 2.14. Let P be a NFM , if R[P] = R[PT ] then P is called as range symmetric.

Example: 3.5 Let us consider NFM

P =

 (0.2, 0.5, 0.7) (0, 0, 0) (0.6, 0.4, 0.2)
(0, 0, 0) (0, 0, 0) (0, 0, 0)

< 0.6, 0.4, 0.2 > (0, 0, 0) < 0.3, 0.5, 0.7 >

,
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.
The following matrices are not range symmetric .

P =

(1, 1, 0) (1, 1, 0) (0, 0, 0)
(0, 0, 0) (1, 1, 0) (1, 1, 0)
(0, 0, 0) (0, 0, 0) (1, 1, 0)

, PT =

(1, 1, 0) (0, 0, 0) (0, 0, 0)
(1, 1, 0) (1, 1, 0) (0, 0, 0)
(0, 0, 0) (1, 1, 0) (1, 1, 0)


(1, 1, 0) (1, 1, 0) (0, 0, 0) ∈ R(P) , (1, 1, 0) (1, 1, 0) (0, 0, 0) ∈ R(PT )

(0, 0, 0) (1, 1, 0) (1, 1, 0) ∈ R(P) , (0, 0, 0) (1, 1, 0) (1, 1, 0) ∈ R(PT )

(0, 0, 0) (0, 0, 0) (1, 1, 0) ∈ R(P) , (0, 0, 0) (0, 0, 0) (1, 1, 0) /∈ R(PT )

R(P) /∈ R(PT )

Definition 2.15. Definition:3.6 Let P be a NFM, if C[P] = C[PT ] then P is called as Column symmetric.

.
Example:3.6 Let us consider

P =

< 0.3, 0.5, 0.4 > < 0, 0, 1 > < 0.7, 0.2, 0.5 >

< 0, 0, 1 > < 0, 0, 1 > < 0, 0, 1 >

< 0.7, 0.2, 0.5 > < 0, 0, 1 > < 0.3, 0.2, 0.4 >

,

The following matrices are not column symmetric

P =

< 1, 1, 0 > < 1, 1, 0 > < 0, 0, 1 >

< 0, 0, 1 > < 1, 1, 0 > < 1, 1, 0 >

< 0, 0, 1 > < 0, 0, 1 > < 1, 1, 0 >

,

PT =

< 1, 1, 0 > < 0, 0, 1 > < 0, 0, 1 >

< 1, 1, 0 > < 1, 1, 0 > < 0, 0, 1 >

< 0, 0, 1 > < 1, 1, 0 > < 1, 1, 0 >

,

([
< 1, 1, 0 > < 0, 0, 1 > < 0, 0, 1 >

])T ∈ C(P) ,
([
< 1, 1, 0 > < 0, 0, 1 > < 0, 0, 1 >

])T
/∈ C(PT )([

< 1, 1, 0 > < 1, 1, 0 > < 0, 0, 1 >
])T ∈ C(P) ,

([
< 1, 1, 0 > < 1, 1, 0 > < 0, 0, 1 >

])T ∈ C(PT )([
< 0, 0, 1 > < 1, 1, 0 > < 1, 1, 0 >

])T ∈ C(P) ,
([
< 0, 0, 1 > < 1, 1, 0 > < 1, 1, 0 >

])T ∈ C(PT )

C(P) /∈ C(PT )

.

4.k-KERNEL SYMMETRIC NFM

Definition 2.16. Definition: 4.1 Let P be a Neutrosophic fuzzy matrix. P belongs to (NF)n is called k-Kernel
symmetric Neutrosophic fuzzy if N(P) =N(KPTK)

.
Note:4.1 Let P is k-Symmetric NFM implies it is k-kernel symmetric NFM, for P = K(PT )K spontaneously
implies N(P) =N(KPTK) . Shows that the converse need not be true.
Example: 4.1 Let us Consider NFM

P =

 (0, 0, 0.5) (0, 0, 0.4) (0.3, 0.4, 0.5)
(0.5, 0.4, 0.6) (0.1, 0.4, 0.6) (0, 0, 0.4)
(0.4, 0.5, 0.3) (0.3, 0.4, 0.5) (0, 0, 0.3)

, K =

(0, 0, 1) (0, 0, 1) (1, 1, 0)
(0, 0, 1) (1, 1, 0) (0, 0, 1)
(1, 1, 0) (0, 0, 1) (0, 0, 1)
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KPTK =

 (0, 0, 0.3) (0, 0, 0.4) (0.3, 0.4, 0.5)
(0.3, 0, 0.5) (0.1, 0, 0.6) (0, 0.4, 0.4)
(0.4, 0, 0.3) (0.5, 0, 0.6) (0, 0.4, 0.5)


Therefore, P ̸= KPT K
But, N(P) = N(KPTK) = (0, 0, 0)

Definition 2.17. Definition 4.2: A NFM P belongs to Fn is s-symmetric NFM iff P =VPTV.

.
Example:4.2 Let us consider NFM

P =

< 0.4, 0.3, 0.2 > < 0, 0, 1 > < 0.5, 0.4, 0.3 >

< 0, 0, 1 > < 0, 0, 1 > < 0, 0, 1 >

< 0.5, 0.4, 0.3 > < 0, 0, 1 > < 0.3, 0.2, 0.4 >

,

.

V =

< 0, 0, 0 > < 0, 0, 0 > < 1, 1, 0 >

< 0, 0, 0 > < 1, 1, 0 > < 0, 0, 0 >

< 1, 1, 0 > < 0, 0, 0 > < 0, 0, 0 >


.

Definition 2.18. A NFM P belongs to Fn is s-column symmetric NFM iff C(P) =C(VPTV).

.
Example:4.3 Let us consider

P =

< 0.7, 0.4, 0.5 > < 0, 0, 1 > < 0.8, 0.2, 0.1 >

< 0, 0, 1 > < 0, 0, 1 > < 0, 0, 1 >

< 0.8, 0.2, 0.1 > < 0, 0, 1 > < 0.5, 0.7, 0.3 >

,

.

V =

< 0, 0, 0 > < 0, 0, 0 > < 1, 1, 0 >

< 0, 0, 0 > < 1, 1, 0 > < 0, 0, 0 >

< 1, 1, 0 > < 0, 0, 0 > < 0, 0, 0 >


.

Definition 2.19. A NFM P belongs to Fn is s-k-column symmetric NFM iff C(P) = C(KVPTVK).

.
Example:4.4 Let us consider NFM P=

[
< 0.7, 0.3, 0.4 > < 0.5, 0.3, 0.4 >

< 0.5, 0.3, 0.4 > < 0.7, 0.3, 0.5 >

]
, K =

[
< 1, 1, 0 > < 0, 0, 0 >

< 0, 0, 0 > < 1, 1, 0 >

]
V =

[
< 0, 0, 0 > < 1, 1, 0 >

< 1, 1, 0 > < 0, 0, 0 >

]
Remark 2.1: We observe that s-k-symmetric NFM is s-k-column symmetric NFM since P = KVPTVK if P is
s-k-symmetric NFM. Thus, C(P) = C(KVPTVK) ,indicating that P is an NFM with s-k-column symmetry.

Example 4.5. Let us consider NFM, V =

[
< 0, 0, 0 > < 1, 1, 0 >

< 1, 1, 0 > < 0, 0, 0 >

]
, P =

[
< 0.7, 0.3, 0.4 > < 0.5, 0.3, 0.4 >

< 0.5, 0.3, 0.4 > < 0.7, 0.3, 0.5 >

]
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, K =

[
< 1, 1, 0 > < 0, 0, 0 >

< 0, 0, 0 > < 1, 1, 0 >

]
KVPTVK =

[
< 0.7, 0.3, 0.4 > < 0.5, 0.3, 0.4 >

< 0.5, 0.3, 0.4 > < 0.7, 0.3, 0.5 >

]
= P P is symmetric, s-κ-symmetric and hence therefore s- k-column symmetric NFM.
Example 4.6. Let us consider NFM

K =

< 0, 0, 0 > < 1, 1, 0 > < 0, 0, 0 >

< 1, 1, 0 > < 0, 0, 0 > < 0, 0, 0 >

< 0, 0, 0 > < 0, 0, 0 > < 1, 1, 0 >

,V =

< 0, 0, 0 > < 0, 0, 0 > < 1, 1, 0 >

< 0, 0, 0 > < 1, 1, 0 > < 0, 0, 0 >

< 1, 1, 0 > < 0, 0, 0 > < 0, 0, 0 >


K ̸= V,K ̸= I and KV ̸= VK

P =

 < 0, 0, 0 > < 0, 0, 0 > < 1, 1, 0 >

< 0.5, 0.3, 0.4 > < 1, 1, 0 > < 0, 0, 0 >

< 0.4, 0.2, 0.6 > < 0.5, 0.3, 0.4 > < 0, 0, 0 >



KV =

< 0, 1, 0 > < 0, 1, 0 > < 0, 1, 0 >

< 0, 1, 0 > < 0, 1, 0 > < 1, 1, 0 >

< 1, 1, 0 > < 0, 1, 0 > < 0, 1, 0 >


,

VK =

< 0, 1, 0 > < 0, 1, 0 > < 1, 1, 0 >

< 1, 1, 0 > < 0, 1, 0 > < 0, 1, 0 >

< 0, 1, 0 > < 1, 1, 0 > < 0, 1, 0 >


KVPTVK =

 < 0, 0, 0 > < 0, 0.2, 0 > < 0, 0, 0 >

< 0, 0, 0 > < 0, 0, 0 > < 1, 0, 0 >

< 0.5, 0, 0 > < 0.4, 0, 0 > < 0, 0, 0 >

 ̸= P

P ̸= KVPTVK

5. Interval valued Secondary k-kernel symmetric fuzzy matrix For a fuzzy matrix

A = AL,AU ∈ IVFMnn

is an Interval valued s - symmetric fuzzy fuzzy matrices iff

AL = VAL
TV

and
AU = VAU

TV

Definition 5.2 For a fuzzy matrix
A = AL,AU ∈ IVFMnn

is an Interval valued s- ks fuzzy matrix iff N(A) =N(VATV) Definition 5.3. For a fuzzy matrix

A = AL,AU ∈ IVFMnn

is Interval valued s-k- ks fuzzy matrix iff

N (AL) = N
(
KVAL

TVK
)

,N (AU) = N
(
KVAU

TVK
)

Remark 5.1 If A is interval valued s-k-symmetric, then AL =KVALVK, and AU =KVATUVK, indicating



M.Anandh and Said Broumi , Commun. Combin., Cryptogr. & Computer Sci., 1 (2024), 37–51 46

that it is interval valued s-k-ks fuzzy matrix, then N(AL) = N(KVALTVK), N (AU) = N (KVAUTVK).We
note that s-k-symmetric fuzzy matrix is s-k-ks fuzzy matrix.
The opposite isn’t always true, though. The example that follows illustrates this V

Example 5.1 L Consider Fuzzy Matrix K =

[
1 0
0 1

]
,V =

[
0 1
1 0

]
and A = AL,AU =

[
[0.2, 0.2] [0.6, 0.8]
[0.6, 0.8] [0.2, 0.2]

]
is an interval valued symmetric, interval valued symmetric and hence therefore interval valued kernel sym-
metric. Hence , AL= [

0.2 0.6
0.6 0.2

]
,AU =

[
0.2 0.8
0.8 0.2

]
KVAL

TVK =

[
0.2 0.6
0.6 0.2

]
KVAL

TVK = AL.
Similar we can get KVAU

TVK = AU.
N(AL)= N(KVAL

TVK) = {0}
A = [AL,AU]is an Interval valued kernel symmetric.
Example 5.2 . Let us consider Fuzzy Matrices

K =

0 1 0
1 0 0
0 0 1

,V =

0 0 1
0 1 0
1 0 0


A = AL,AU =

 [0, 0.1] [0, 0.1] [0.2, 0.2]
[0.2, 0.3] [0.3, 0.4] [0.2, 0.3]
[0.3, 0.3] [0.1, 0.1] [0, 0.1]


is an Interval valued kernel symmetric but not an Interval valued symmetric.

AL =

 0 0.1 0.2
0.2 0.3 0.2
0.3 0.1 0

,AU =

0.1 0.1 0.2
0.3 0.4 0.3
0.3 0.1 0.1



KVAL
TVK =

0.3 0.1 0.1
0.2 0 0.2
0.2 0.3 0


AL ̸= KVAL

TVK

Hence A is not s- k-symmetric.
But s- k- kernel symmetric.
i.e) N ( A) = N (KVATVK ) =0
6. Interval valued Secondary k-Range symmetric Intuitionistic fuzzy matrix
Interval-valued intuitionistic fuzzy matrix (IVIFM):
Example 6.1 Let

P =

[
< [0.4, 0.4], [0.5, 0.5] > < [0.4, 0.5], [0.2, 0.4] >
< [0.4, 0.5], [0.2, 0.4] > < [0.4, 0.4], [0.3, 0.3] >

]
,

Hence, Lower Limit IFM,

PL = [PµL,PvL] =
[
< 0.4, 0.4 > < 0.4, 0.5 >

< 0.4, 0.5 > < 0.4, 0.4 >

]
,
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Upper Limit IFM

PU = [PµU,PvU] =

[
< 0.5, 0.5 > < 0.2, 0.4 >

< 0.2, 0.4 > < 0.3, 0.3 >

]
Remark 6.1 If P is interval valued s-k-symmetric, then [PµL,PvL]=KV[PµL,PvL]TVK, and AU =KVATUVK,
indicating that it is interval valued (IV) s-k-RS Intuitionistic fuzzy matrix, then R([PµL,PvL]) = R(KV[PµL,PvL]TVK),
R([PµU,PvU]) = R(KV[PµU,PvU]TVK).We note that s-k-symmetric Intuitionistic fuzzy matrix is s-k-RS
Intuitionistic fuzzy matrix.
The opposite isn’t always true, though. The example that follows illustrates this V.
Example 6.2 Let

K =

[
< 1, 0 > < 0, 1 >

< 0, 1 > < 1, 0 >

]
,V =

[
< 0, 1 > < 1, 0 >

< 1, 0 > < 0, 1 >

]
and

P =< [PµL,PµU], [PvL,PvU] >∈ IVIFMnn

P =

[
< [0.4, 0.4], [0.5, 0.5] > < [0.4, 0.5], [0.2, 0.4] >
< [0.4, 0.5], [0.2, 0.4] > < [0.4, 0.4], [0.3, 0.3] >

]
,

is an interval valued symmetric, interval valued symmetric and hence therefore interval valued range sym-
metric. Hence,

PL =

[
< 0.4, 0.4 > < 0.4, 0.5 >

< 0.4, 0.5 > < 0.4, 0.4 >

]
,PU =

[
< 0.5, 0.5 > < 0.2, 0.4 >

< 0.2, 0.4 > < 0.3, 0.3 >

]

KV =

[
< 1, 0 > < 0, 1 >

< 0, 1 > < 1, 0 >

][
< 0, 1 > < 1, 0 >

< 1, 0 > < 0, 1 >

]
=

[
< 0, 1 > < 1, 0 >

< 1, 0 > < 0, 1 >

]
VK =

[
< 0, 1 > < 1, 0 >

< 1, 0 > < 0, 1 >

][
< 1, 0 > < 0, 1 >

< 0, 1 > < 1, 0 >

]
=

[
< 0, 1 > < 1, 0 >

< 1, 0 > < 0, 1 >

]

KVPL
TVK =

[
< 0, 1 > < 1, 0 >

< 1, 0 > < 0, 1 >

][
< 0.5, 0.5 > < 0.2, 0.4 >

< 0.2, 0.4 > < 0.3, 0.3 >

][
< 0, 1 > < 1, 0 >

< 1, 0 > < 0, 1 >

]
= PU

A = AL,AU

is an IV RS.
Example 6.3 . Let us consider IFM

K =

[
< 1, 0 > < 0, 1 >

< 0, 1 > < 1, 0 >

]
,V =

[
< 0, 1 > < 1, 0 >

< 1, 0 > < 0, 1 >

]
and

P =< [PµL,PµU], [PvL,PvU] >∈ IVIFMnn

P =

[
< [0, 0.2], [0, 1] > < [0.2, 0.5], [0.2, 0.4] >

< [0.2, 0.5], [0.2, 0.4] > < [0.2, 0.2], [0.3, 0.4] >

]
,

PU =

[
< 0, 1 > < 0.2, 0.4 >

< 0.2, 0.4 > < 0.3, 0.4 >

]
,

KVPU
TVK ̸= PU

Here P = KPTU K
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7. Interval valued Neutrosophic fuzzy matrix (IVNFM):
Example 7.1 Consider an Interval valued Neutrosophic Fuzzy Matrix

P =

[
< [0, 0], [1, 1], [1, 1] > < [0.1, 0.3], [0.2, 0.4], [0.2, 0.5] >

< [0.1, 0.3], [0.2, 0.4], [0.2, 0.5] > < [0, 0], [1, 1], [1, 1] >

]
Lower Limit NFM,

[PµL,PλL,PvL] =
[

< 0, 1, 1 > < 0.1, 0.2, 0, 2 >

< 0.1, 0.2, 0.2 > < 0, 1, 1 >

]
Upper Limit NFM,

[PµU,PλU,PvU] =

[
< 0, 1, 1 > < 0.3, 0.4, 0.5 >

< 0.3, 0.4, 0.5 > < 0, 1, 1 >

]
andQ =

[
< [0, 0], [1, 1], [1, 1] > < [0.2, 0.4], [0.3, 0.5], [0.1, 0.5] >

< [0.2, 0.4], [0.3, 0.5], [0.1, 0.5] > < [0, 0], [1, 1], [1, 1] >

]
Then,P+Q =

[
< [0, 0], [1, 1], [1, 1] > < [0.2, 0.4], [0.2, 0.4], [0.1, 0.5] >

< [0.2, 0.4], [0.2, 0.4], [0.1, 0.5] > < [0, 0], [1, 1], [1, 1] >

]
PQ =

[
< [0, 0], [1, 1], [1, 1] > < [0.1, 0.3], [0.3, 0.5], [0.2, 0.5] >

< [0.1, 0.3], [0.3, 0.5], [0.2, 0.5] > < [0, 0], [1, 1], [1, 1] >

]
|P| =< [0, 0], [1, 1], [1, 1] >< [0, 0], [1, 1], [1, 1] > + < [0.1, 0.3], [0.2, 0.4], [0.2, 0.5] >< [0.1, 0.3], [0.2, 0.4], [0.2, 0.5] >

|P| =< [0, 0], [1, 1], [1, 1] > + < [0.1, 0.3], [0.2, 0.4], [0.2, 0.5] >=< [0.1, 0.3], [0.2, 0.4], [0.2, 0.5] >

Example 7.2 Let us consider interval valued NFM

P =

[
< [0, 0], [1, 1], [1, 1] > < [0.1, 0.3], [0.2, 0.4], [0.2, 0.5] >

< [0.1, 0.3], [0.2, 0.4], [0.2, 0.5] > < [0, 0], [1, 1], [1, 1] >

]
Lower Limit NFM,

[PµL,PλL,PvL] =
[

< 0, 1, 1 > < 0.1, 0.2, 0, 2 >

< 0.1, 0.2, 0.2 > < 0, 1, 1 >

]
,

Upper Limit NFM,

[PµU,PλU,PvU] =

[
< 0, 1, 1 > < 0.3, 0.4, 0.5 >

< 0.3, 0.4, 0.5 > < 0, 1, 1 >

]
V=

[
< 0, 0, 0 > < 1, 1, 0 >

< 1, 1, 0 > < 0, 0, 0 >

]
, K=

[
< 1, 1, 0 > < 0, 0, 0 >

< 0, 0, 0 > < 1, 1, 0 >

]

KVPL
TVK =

[
< 0, 1, 0.2 > < 0, 0.2, 0.2 >

< 0.1, 0.2, 0.2 > < 0, 1, 0.2 >

]
KVPL

TVK ̸= PL

Similarly,
KVPU

TVK ̸= PU

PL = KPLK

KPLK =

[
< 0, 1, 0.2 > < 0.1, 0.2, 0.2 >

< 0.1, 0.2, 0.2 > < 0.1, 1, 0.2 >

]
̸= PL

Similarly,
PU ̸= KPUK
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N (PL) =
N(KVPL

TVK) =< 0, 0, 0 >

Example 7.3. Let us consider Interval valued NFM,

P =

[
< [0.7, 0.2], [0.3, 0.4], [0.4, 0.6] > < [0.5, 0.4], [0.3, 0.3], [0.4, 0.2] >
< [0.5, 0.4], [0.3, 0.3], [0.4, 0.2] > < [0.7, 0.2], [0.3, 0.4], [0.4, 0.6] >

]
,V =

[
< 0, 0, 0 > < 1, 1, 0 >

< 1, 1, 0 > < 0, 0, 0 >

]
,

K =

[
< 1, 1, 0 > < 0, 0, 0 >

< 0, 0, 0 > < 1, 1, 0 >

]
,

Lower Limit NFM,

PL =

[
< 0.7, 0.3, 0.4 > < 0.5, 0.3, 0.4 >

< 0.5, 0.3, 0.4 > < 0.7, 0.3, 0.4 >

]
,

Upper Limit NFM,

PU =

[
< 0.2, 0.4, 0.6 > < 0.4, 0.3, 0.2 >

< 0.4, 0.3, 0.2 > < 0.2, 0.4, 0.6 >

]
KVPL

TVK =

[
< 0.7, 0.3, 0.4 > < 0.5, 0.3, 0.4 >

< 0.5, 0.3, 0.4 > < 0.7, 0.3, 0.4 >

]
= PL

Example 7.4 Let us consider Interval valued NFM Lower limit NFM,

[PµL,PλL,PvL] =

 < 0, 0, 0 > < 0, 0, 0 > < 1, 1, 0 >

< 0.5, 0.3, 0.4 > < 1, 1, 0 > < 0, 0, 0 >

< 0.4, 0.2, 0.6 > < 0.5, 0.3, 0.4 > < 0, 0, 0 >



K =

< 0, 0, 0 > < 1, 1, 0 > < 0, 0, 0 >

< 1, 1, 0 > < 0, 0, 0 > < 0, 0, 0 >

< 0, 0, 0 > < 0, 0, 0 > < 1, 1, 0 >

,V =

< 0, 0, 0 > < 0, 0, 0 > < 1, 1, 0 >

< 0, 0, 0 > < 1, 1, 0 > < 0, 0, 0 >

< 1, 1, 0 > < 0, 0, 0 > < 0, 0, 0 >



KV =

< 0, 1, 0 > < 0, 1, 0 > < 0, 1, 0 >

< 0, 1, 0 > < 0, 1, 0 > < 1, 1, 0 >

< 1, 1, 0 > < 0, 1, 0 > < 0, 1, 0 >


,

VK =

< 0, 1, 0 > < 0, 1, 0 > < 1, 1, 0 >

< 1, 1, 0 > < 0, 1, 0 > < 0, 1, 0 >

< 0, 1, 0 > < 1, 1, 0 > < 0, 1, 0 >


KVPL

TVK =

 < 0, 0, 0 > < 0, 0.2, 0 > < 0, 0, 0 >

< 0, 0, 0 > < 0, 0, 0 > < 1, 0, 0 >

< 0.5, 0, 0 > < 0.4, 0, 0 > < 0, 0, 0 >

 ̸= PL

PL ̸= KVPL
TVK

Hence P is not s- k-symmetric and not RS. But s- k- kernel symmetric.
i.e) N ( PL) = N (KVPLTVK ) = (0,0,0)
8. Theoretical Approaches 8.1Difference between classical matrices and fuzzy matrices Classical matrices
and fuzzy matrices are mathematical concepts that differ in their representation and handling of uncer-
tainty: Classical Matrices: Deterministic Values: Classical matrices contain precise, deterministic values.
Each element of a classical matrix is a real number or an element from a specific set (e.g., integers) with no
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ambiguity or uncertainty. Exact Arithmetic: Operations on classical matrices are based on exact arithmetic,
such as addition and multiplication of real numbers or integers.

8.2Fuzzy Matrices: Fuzzy Values: Fuzzy matrices involve values that represent uncertainty or vague-
ness. Instead of exact numbers, elements in a fuzzy matrix are often membership degrees in a fuzzy set
ranging from 0 to 1. These degrees indicate the extent to which an element belongs to a particular set.
Fuzzy Arithmetic: Operations on fuzzy matrices are typically based on fuzzy arithmetic, which involves
rules for combining fuzzy values, taking into account uncertainty. In summary, the key difference lies in
the nature of values within the matrices. Classical matrices deal with precise, crisp values, while fuzzy ma-
trices incorporate fuzzy, uncertain values that can represent vagueness or ambiguity in real-world data and
decision-making scenarios. Fuzzy matrices are particularly useful in fields like fuzzy logic, decision-making,
and expert systems where uncertainty needs to be considered. Intuitionistic fuzzy matrices and neutrosophic
matrices are both extensions of classical matrices designed to handle uncertainty, but they differ in their
representation and approach. Here are the differences, advantages, and limitations of each:

8.3 Intuitionistic Fuzzy Matrices: Representation: Intuitionistic fuzzy matrices use three parameters
for each element: membership degree These parameters represent the degree of membership, degree of non-
membership, and degree of uncertainty or hesitation associated with each element. Advantages: Comprehen-
sive Representation: Intuitionistic fuzzy matrices provide a more comprehensive and nuanced representation
of uncertainty compared to traditional fuzzy matrices, allowing for a more detailed modeling of complex
decision-making scenarios. Handling Hesitation: The inclusion of hesitation degrees allows decision-makers
to explicitly express their uncertainty or reluctance about certain decisions. Useful in Complex Problems:
They are particularly useful in complex decision-making problems where uncertainty is high and different
degrees of membership and non-membership need to be considered. Limitations: Increased Complexity:
The inclusion of three parameters per element makes computations more complex compared to traditional
fuzzy matrices.

8.4 Neutrosophic Fuzzy Matrices: Representation: Neutrosophic matrices use three components for each
element: truth degree (T), indeterminacy degree (I), and falsity degree (F). These components represent
the truth, indeterminacy, and falsity aspects of each element. Advantages: Handling Contradictions: Neu-
trosophic matrices are capable of handling contradictions and inconsistencies in data, making them suitable
for situations where conflicting information is present. Flexibility: They offer flexibility in representing un-
certainty, allowing for more complex and diverse uncertainty scenarios. Useful in Conflicting Data: Neutro-
sophic matrices are particularly useful when dealing with data sources that provide conflicting or uncertain
information. Limitations: Complex Arithmetic: Performing arithmetic operations on neutrosophic matrices
can be more complex compared to traditional or intuitionistic fuzzy matrices. Lack of Standardization:
Neutrosophic logic is less standardized and widely accepted compared to fuzzy logic, which may limit its
practical application in some fields. Data Interpretation: Interpreting the three components (T, I, F) can
be subjective and context-dependent, which may lead to challenges in real-world applications. In summary,
the choice between intuitionistic fuzzy matrices and neutrosophic matrices depends on the specific problem
and the nature of uncertainty and contradictions present in the data. Intuitionistic fuzzy matrices offer a
more structured and nuanced representation of uncertainty, while neutrosophic matrices excel in handling
conflicting information and are more flexible in uncertain scenarios. However, both approaches come with
computational complexities and challenges in data interpretation.

Conclusion:8.5 In summary, these three types of matrices each offer a distinct approach to handling un-
certainty and ambiguity in data. Fuzzy matrices focus on membership degrees, intuitionistic fuzzy matrices
offer a more detailed representation with membership, non-membership, and hesitancy values, and neutro-
sophic matrices are tailored for dealing with truth, indeterminacy, and falsity in membership information.
The choice of which matrix to use depends on the specific context and the nature of uncertainty involved, as
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outlined by their respective. We present equivalent characterizations of an Interval valued Fuzzy matrices,
Intuitionistic Fuzzy matrices and Neutrosophic Fuzzy matrices explain and numerical examples are given.
Also we discussed range symmetric, kernel symmetric, column symmetric of these three types of Matrices
including numerical results.
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